Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Infectious Diseases: News, Opinions, Training ; - (1):17-25, 2023.
Article in Russian | EMBASE | ID: covidwho-20243049

ABSTRACT

The COVID-19 pandemic has altered people's lifestyles around the world. Prevention of recurrent episodes of the disease and mitigation of its consequences are especially associated with effective post-COVID-19 rehabilitation in patients. The aim of the study was to evaluate the effects of the drug Likopid (glucosaminylmuramyl dipeptide, GMDP) for post-COVID-19 rehabilitation in patients. Material and methods. Patients who recovered from mild to moderate COVID-19 (n=60, mean age 54+/- 11.7 years) were randomized into the observation group (n=30, 15 men and 15 women) who received 2 courses of Licopid (1 mg twice a day) and the comparison group (n=30, 15 men and 15 women). Analysis of the phenotypic and functional characteristics of the innate immune cellular factors was carried out before the start of immunomodulatory therapy, immediately after the end of the course, and also after 6 months observations. In order to assess the quality of life of all patients, we used the SF-36 Health Status Survey and the Hospital Anxiety and Depression Scale questionnaires. Results. During assessing the effect of immunomodulatory therapy on the parameters of innate immunity of patients at the stage of rehabilitation after COVID-19, an increase in the protective cytolytic activity of CD16+ and CD8+Gr+ cells, as well as a persistent increase in TLR2, TLR4 and TLR9 expression was found, which indicates the antigen recognition recovery and presentation at the level of the monocytic link of the immune system. The use of GMDP as an immunomodulatory agent resulted in an 8-fold reduction in the frequency and severity of respiratory infections due to an increase in the total monocyte count. As a result of assessing patients' quality of life against the background of the therapy, a positive dynamic in role functioning was revealed in patients. In the general assessment of their health status, an increase in physical and mental well-being was noted during 6 months of observation. The comparison group showed no improvement in the psychoemotional state. Discussion. The study demonstrated the effectiveness of GMDP immunomodulatory therapy in correcting immunological parameters for post-COVID-19 rehabilitation in patients. The data obtained are consistent with the previously discovered ability of GMDP to restore impaired functions of phagocytic cells and induce the expression of their surface activation markers, which in turn contributes to an adequate response to pathogens. Conclusion. The study revealed that the correction of immunological parameters with the use of GMDP in COVID-19 convalescents contributed not only to a decrease in the frequency and severity of respiratory infections, but also to an improvement in the psycho-emotional state of patients, and a decrease in anxiety and depression.Copyright © Eco-Vector, 2023. All rights reserved.

2.
Chinese Traditional and Herbal Drugs ; 54(8):2523-2535, 2023.
Article in Chinese | EMBASE | ID: covidwho-20235800

ABSTRACT

Objective To explore the core targets and important pathways of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) induced atherosclerosis (AS) progression from the perspective of immune inflammation, so as to predict the potential prevention and treatment of traditional Chinese medicine (TCM). Methods Microarray data were obtained from the Gene Expression Omnibus (GEO) database for coronavirus disease 2019 (COVID-19) patients and AS patients, and the "limmar" and "Venn" packages were used to screen out the common differentially expressed genes (DEGs) genes in both diseases. The gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses were performed on the common DEGs to annotate their functions and important pathways. The two gene sets were scored for immune cells and immune function to assess the level of immune cell infiltration. The protein-protein interaction (PPI) network was constructed by STRING database, and the CytoHubba plug-in of Cytoscape was used to identify the hub genes. Two external validation datasets were introduced to validate the hub genes and obtain the core genes. Immuno-infiltration analysis and gene set enrichment analysis (GSEA) were performed on the core genes respectively. Finally the potential TCM regulating the core genes were predicted by Coremine Medical database. Results A total of 7898 genes related to COVID-19, 471 genes related to AS progression;And 51 common DEGs, including 32 highly expressed genes and 19 low expressed genes were obtained. GO and KEGG analysis showed that common DEGs, which were mainly localized in cypermethrin-encapsulated vesicles, platelet alpha particles, phagocytic vesicle membranes and vesicles, were involved in many biological processes such as myeloid differentiation factor 88 (MyD88)-dependent Toll-like receptor signaling pathway transduction, interleukin-8 (IL-8) production and positive regulation, IL-6 production and positive regulation to play a role in regulating nicotinamide adenine dinucleotide phosphate oxidase activity, Toll-like receptor binding and lipopeptide and glycosaminoglycan binding through many biological pathways, including Toll-like receptor signaling pathways, neutrophil extracellular trap formation, complement and coagulation cascade reactions. The results of immune infiltration analysis demonstrated the state of immune microenvironment of COVID-19 and AS. A total of 5 hub genes were obtained after screening, among which Toll-like receptor 2 (TLR2), cluster of differentiation 163 (CD163) and complement C1q subcomponent subunit B (C1QB) genes passed external validation as core genes. The core genes showed strong correlation with immune process and inflammatory response in both immune infiltration analysis and GSEA enrichment analysis. A total of 35 TCMs, including Chuanxiong (Chuanxiong Rhizoma), Taoren (Persicae Semen), Danggui (Angelicae Sinensis Radix), Huangqin (Scutellariae Radix), Pugongying (Taraxaci Herba), Taizishen (Pseudostellariae Radix), Huangjing (Polygonati Rhizoma), could be used as potential therapeutic agents. Conclusion TLR2, CD163 and C1QB were the core molecules of SARS-CoV-2-mediated immune inflammatory response promoting AS progression, and targeting predicted herbs were potential drugs to slow down AS progression in COVID-19 patients.Copyright © 2023 Editorial Office of Chinese Traditional and Herbal Drugs. All rights reserved.

3.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20232118

ABSTRACT

Respiratory viral infections (RVI) such as influenza and COVID19 impact the host systemic immune system along with causing deleterious chronic inflammatory responses and respiratory distress. While the role of chronic inflammation in cancer is well-established, the role of RVI on tumorigenesis is poorly defined. To study the role of RVI on breast cancer, we first infected murine respiratory epithelial cells (mRES) with murine sendai virus (mSV), an analog for human parainfluenza virus. These infected mRES were co-cultured with 4T1 murine breast cancer cells in 1:1 dilution on a single 2D plate and also in trans-well format. Both in co-culture and transwell culture we saw a 40- 80% (p<0.05) increased proliferation of breast cancer cells. Similarly, when 4T1 cells were treated with the supernatant collected from infected mRES cells in 1:5 dilution, also demonstrated a 2.3 fold increased breast cancer cell proliferation. The cytokine analysis from the supernatant collected from infected mRES cells demonstrated a 17-23 fold enhanced secretion of alpha/beta-defensins. Direct treatment of alpha-defensin (cyptidin-4, 10 pg/mL) and beta-defensin-3 (mBD3, 20 pg/mL) on 4T1 cells demonstrated enhanced expression of chemokine metastatic receptor, CXCR4 (4.3 fold), angiogenic factor, VEGF (12.8 fold) and cell division favoring factor, CDK2 (8.1 fold). Further, analysis of infected mRES cells demonstrated upregulation of toll-like receptor 2 (TLR2) and NODlike receptor protein 3 (NLRP3) expression. Interesting, co-cultured of infected mRES with syngeneic murine CD4 T cells induced exhaustion phenotype (PD1+ and CTLA4+ ) differentiation of CD4 T cells. Taken together, these data suggest that respiratory viral infections through induction of cancer cell proliferation and inhibiting anti-tumor adaptive immune responses promote breast cancer proliferation.

4.
Scandinavian Journal of Immunology ; 2023.
Article in English | EMBASE | ID: covidwho-2320620

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic underlines a persistent threat of respiratory tract infectious diseases and warrants preparedness for a rapid response. At present, COVID-19 has had a serious social impact and imposed a heavy global burden on public health. The exact pathogenesis of COVID-19 has not been fully elucidated. Since the outbreak of COVID-19, a renewed attention has been brought to Toll-like receptors (TLRs). Available data and new findings have demonstrated that the interaction of human TLRs and SARS-CoV-2 is a vital mediator of COVID-19 immunopathogenesis. TLRs such as TLR2, 4, 7 and 8 are potentially important in viral combat and activation of immunity in patients with COVID-19. Therapeutics targeting TLRs are currently considered promising options against the pandemic. A number of TLR-targeting immunotherapeutics are now being investigated in preclinical studies and different phases of clinical trials. In addition, innovative vaccines based on TLRs under development could be a promising approach for building a new generation of vaccines to solve the current challenges. In this review, we summarize recent progress in the role of TLRs in COVID-19, focusing the new candidate drugs targeting TLRs, the current technology and potential paths forward for employing TLR agonists as vaccine adjuvants.Copyright © 2023 The Scandinavian Foundation for Immunology.

5.
Infectious Diseases: News, Opinions, Training ; - (1):17-25, 2023.
Article in Russian | EMBASE | ID: covidwho-2319392

ABSTRACT

The COVID-19 pandemic has altered people's lifestyles around the world. Prevention of recurrent episodes of the disease and mitigation of its consequences are especially associated with effective post-COVID-19 rehabilitation in patients. The aim of the study was to evaluate the effects of the drug Likopid (glucosaminylmuramyl dipeptide, GMDP) for post-COVID-19 rehabilitation in patients. Material and methods. Patients who recovered from mild to moderate COVID-19 (n=60, mean age 54+/- 11.7 years) were randomized into the observation group (n=30, 15 men and 15 women) who received 2 courses of Licopid (1 mg twice a day) and the comparison group (n=30, 15 men and 15 women). Analysis of the phenotypic and functional characteristics of the innate immune cellular factors was carried out before the start of immunomodulatory therapy, immediately after the end of the course, and also after 6 months observations. In order to assess the quality of life of all patients, we used the SF-36 Health Status Survey and the Hospital Anxiety and Depression Scale questionnaires. Results. During assessing the effect of immunomodulatory therapy on the parameters of innate immunity of patients at the stage of rehabilitation after COVID-19, an increase in the protective cytolytic activity of CD16+ and CD8+Gr+ cells, as well as a persistent increase in TLR2, TLR4 and TLR9 expression was found, which indicates the antigen recognition recovery and presentation at the level of the monocytic link of the immune system. The use of GMDP as an immunomodulatory agent resulted in an 8-fold reduction in the frequency and severity of respiratory infections due to an increase in the total monocyte count. As a result of assessing patients' quality of life against the background of the therapy, a positive dynamic in role functioning was revealed in patients. In the general assessment of their health status, an increase in physical and mental well-being was noted during 6 months of observation. The comparison group showed no improvement in the psychoemotional state. Discussion. The study demonstrated the effectiveness of GMDP immunomodulatory therapy in correcting immunological parameters for post-COVID-19 rehabilitation in patients. The data obtained are consistent with the previously discovered ability of GMDP to restore impaired functions of phagocytic cells and induce the expression of their surface activation markers, which in turn contributes to an adequate response to pathogens. Conclusion. The study revealed that the correction of immunological parameters with the use of GMDP in COVID-19 convalescents contributed not only to a decrease in the frequency and severity of respiratory infections, but also to an improvement in the psycho-emotional state of patients, and a decrease in anxiety and depression.Copyright © Eco-Vector, 2023. All rights reserved.

6.
Allergy: European Journal of Allergy and Clinical Immunology ; 78(Supplement 111):604, 2023.
Article in English | EMBASE | ID: covidwho-2303909

ABSTRACT

Background: Effective rehabilitation of patients who have had a SARS CoV-2 infection is essential to prevent re-infections and will improve the quality of life of people and reduce the burden on the healthcare system. Muramylpeptides are used in the prevention of seasonal diseases in children and adults in order to correct immunodeficiency states and prevent infectious complications. The aim of this study was to study the dynamic changes in the state of cellular factors of innate immunity and the levels of anxiety and depression in patients treated with glucosaminyl muramyl dipeptide (GMDP). Method(s): Patients who underwent mild to moderate COVID-19 (N = 60, mean age 54 +/- 11.7 years) were randomized to the study group (30 people, 15 men and 15 women) who received 2 courses of licopid 1 mg twice per day and a comparison group (30 people, 15 men and 15 women). Analysis of the phenotypic and functional characteristics of the cellular factors of the innate immune response was carried out before the start of immunomodulatory therapy, immediately after the end of the course, and also after 6 months. observations. To assess the quality of life of all patients, the SF-36 Health Status Survey and HADS questionnaires were used before the use of licopid, at the end of the course and after 6 months of follow-up. Result(s): In the course of assessing the effect of immunomodulatory therapy on the parameters of innate immunity of patients at the stage of rehabilitation after suffering COVID-19, an increase in the protective cytolytic activity of CD16+, CD8+Gr+ cells, as well as a persistent increase in the expression of TLR2, TLR4 and TLR9 was found, which indicates the restoration of antigenic recognition and presentations at the level of the monocytic link of the immune system. The use of GMDP as an immunomodulatory agent resulted in an 8-fold decrease in the frequency and severity of respiratory infections due to an increase in the total monocyte count, which persisted for 6 months from the start of therapy, while the use of systemic antibiotic therapy was not required, while in the comparison group -7 people were forced to resort to this therapy due to the severity of acute respiratory infections. When analyzing the assessment of the quality of life of patients against the background of the therapy, patients showed positive dynamics in role functioning, general assessment of their health status, and an increase in physical and mental well-being during 6 months of observation. In the comparison group, there was no improvement in the psycho-emotional state of patients. Conclusion(s): In this study, for the first time, it was found that the correction of immunological parameters when exposed to GMDP after a previous illness contributed not only to a decrease in the frequency and severity of respiratory infections, but also to an improvement in the psycho-emotional state of patients, and a decrease in anxiety and depression.

7.
Food and Agricultural Immunology ; 33(1):65-79, 2022.
Article in English | CAB Abstracts | ID: covidwho-2260461

ABSTRACT

Under the COVID-19 pandemic, interest in immune enhancement and anti-obesity is increasing. Thus, in this study, we investigated whether Kadsura japonica fruits (KJF) exhibits immunostimulatory activity and anti-obesity activity. KJF increased the production of immunostimulatory factors and phagocytosis in RAW264.7 cells. Inhibition of TLR2 and TLR4 blocked KJF-mediated production of immunostimulatory factors in RAW264.7 cells. In addition, the inhibition of MAPK and PI3 K/AKT signaling pathway reduced KJF-mediated production of immunostimulatory factors, and the activation of MAPK and PI3 K/AKT signaling pathway by KJF suppressed the inhibition of TLR2/4. KJF attenuated the lipid accumulation and the protein expression such as CEBPa, PPARP, perilipin-1, adiponectin, and FABP4 related to the lipid accumulation in 3T3-L1 cells. In addition, KJF inhibited excessive proliferation of 3T3-L1 cells and protein expressions such as beta-catenin and cyclin D1 related to cell growth. These findings indicate that KJF may have immunostimulatory activity and anti-obesity activity.

8.
Genetics and Molecular Biology ; 46(4 Supplement 2) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2252644

ABSTRACT

The role of steroid hormones against infectious diseases has been extensively studied. From immunomodulatory action to direct inhibition of microorganism growth, hormones D3 (VD3) and 17beta-estradiol (E2), and the genetic pathways modulated by them, are key targets for a better understanding pathogenesis of infectious respiratory diseases (IRD) such as tuberculosis (TB) and the coronavirus disease-19 (COVID-19). Currently, the world faces two major public health problems, the outbreak of COVID-19, accounting for more than 6 million so far, and TB, more than 1 million deaths per year. Both, although resulting from different pathogens, the Mtb and the SARS-CoV-2, respectively, are considered serious and epidemic. TB and COVID-19 present similar infection rates between men and women, however the number of complications and deaths resulting from the two infections is higher in men when compared to women in childbearing age, which may indicate a role of the sex hormone E2 in the context of these diseases. E2 and VD3 act upon key gene pathways as important immunomodulatory players and supporting molecules in IRDs. This review summarizes the main roles of these hormones (VD3 and E2) in modulating immune and inflammatory responses and their relationship with TB and COVID-19.Copyright © Sociedade Brasileira de Genetica.

9.
American Journal of Respiratory and Critical Care Medicine ; 205(1), 2022.
Article in English | EMBASE | ID: covidwho-1927754

ABSTRACT

RATIONALE: INNA-051 is a Toll-like receptor (TLR) 2/6 agonist delivered via intranasal spray, being developed for treatment of respiratory viral diseases. Pre-clinical studies demonstrate that INNA-051 and analogues are effective against a variety of respiratory viruses including SARS-CoV- 2, influenza, and rhinovirus. INNA-051 induces a tissue-localized innate immune response with cytokine expression and infiltration of innate immune cells into the nasal epithelium that play a key role in viral clearance. The primary objective of this study (ACTRN12621000607875p) was evaluation of safety and tolerability in healthy adults. METHODS: This was a randomized, doubleblind, placebo-controlled, Phase 1 study of single and multiple ascending INNA-051 intranasal doses, with the total dose split evenly across both nostrils. Sixty-four participants ages 18-55 were enrolled, with 5 cohorts (6 active:2 placebo/cohort) receiving single doses of 20μg, 60μg, 150μg, 300μg, or 600μg, and 3 cohorts (6 active:2 placebo/cohort) receiving 4 total doses of 60μg, 150μg, and 300μg administered every third day. Assessments included adverse events, clinical laboratories, peak inspiratory nasal flow (PINF), and peak expiratory flow (PEF).RESULTS: Sixtyfour participants (36 males:28 females) ages 19-55 years were enrolled. Preliminary blinded results demonstrate that INNA-051 was well tolerated across all single and multiple dose cohorts. Adverse events were predominantly mild, limited to the nasopharynx, and resolved within 24-48 hours. Across single dose cohorts, the most frequent events were nasal congestion/blockage (n=20), nasal erythema/inflammation (n=19), rhinorrhea (n=13) and headache (n=11). Except for the 20-μg cohort with only 2 reports of rhinorrhea, all other single dose cohorts had a similar incidence of the other adverse events with no obvious dose relationship. Across all 3 multiple dose cohorts, nasal erythema/inflammation (n=42) was most frequently reported, followed by nasal congestion/blockage (n=26), rhinorrhea (n=9), and headache (n=9), with no dose-dependent relationship. No participants withdrew from the study due to adverse events. There were no clinically significant changes in clinical chemistry and hematology laboratories across all single and multiple dose cohorts. No consistent decrease in post-dose PNIF assessments were observed, and there were no changes in PEF assessments to suggest lower respiratory tract airway response to intranasal INNA- 051.CONCLUSIONS: Intranasal INNA-051 was well tolerated up to single doses of 600μg and multiple doses of 300μg. Mild, self-limited nasal adverse events as described are possible indicators of tissue-localized innate immune response by INNA-051. Investigation of cytokine levels and gene expression of the intranasal epithelium are needed to specifically determine TLR2/6 engagement by INNA-051.

10.
American Journal of Respiratory and Critical Care Medicine ; 205(1), 2022.
Article in English | EMBASE | ID: covidwho-1927707

ABSTRACT

Rationale: The SARS-CoV-2 pandemic has underscored the need for novel anti-infectious strategies, including host-directed therapeutics, against existing and emerging respiratory pathogens. We have reported that an aerosolized therapeutic comprised of a Toll-like receptor (TLR)-2/6 agonist, Pam2CSK4, and a TLR-9 agonist, ODN M362, stimulate pathogen-agnostic innate immune responses in lung epithelial cells. This therapeutic (“Pam2-ODN”) promotes synergistic microbicidal activity and host survival benefit against pneumonia caused by a wide range of pathogens. Here, we study the immunomodulatory signaling mechanisms required to effect this inducible epithelial resistance. Methods: Bioinformatic analysis of transcriptional responses from human and mouse lung epithelium al cells to influenza A H1N1 or SARS-CoV-2 (GSE147507) or Pam2-ODN (GSE289984, GSE26864) were analyzed using R and IPA software to identify essential transcription factors (TFs). Lung cell population dynamics were studied for TFs related to Pam2-ODN immunomodulatory signaling using high-throughput imaging flow cytometry (IFC). Human or mouse lung epithelial cells were stimulated with PBS or Pam2-ODN and single or dual inhibitors of TFs before challeng with influenza A H3N2 (IAV) or coronavirus OC43 (CoV) to compare the epithelium-specific transcriptional control of relevant TFs using in-cell western blotting, IFC and hemagglutination for viral burdens. Results: Functional enrichment analysis revealed RelA and cJUN to be major immunomodulatory TFs of Pam2-ODN and activators of leukocyte- and epithelial-derived antiviral immune mechanisms targeting replication of influenza A and SARS-CoV-2. Cell population dynamics studied from mouse lungs confirmed activation of RelA and cJUN in CD45+, EpCAM- leukocytes and in CD45-, EpCAM+ epithelial cells, with predominant activation of the lung epithelium and none or minimal activation of structural cell populations such as fibroblasts or endothelial cells. Studies of epithelium-specific signaling in vitro revealed co-activation of RelA-(pS536) and cJun- (pS73) TFs with Pam2-ODN, and earlier onset of cJUN phosphorylation and nuclear translocation with Pam2-ODN after IAV or CoV infection. Individual or dual inhibition of RelA and/or cJUN activity in vitro disrupted the antiviral activity of Pam2-ODN of IAV infected cells. Conclusion: Pam2-ODN induces unique, pathogen-agnostic protective signaling in lung epithelial cells that involves cooperative activation of RelA and cJUN. This combined TF signaling mechanism is not observed in other structural lung cell populations after Pam2-ODN exposure. Further, the phospho-regulation dynamics of RelA and cJUN are not replicated by IAV or CoV infection alone, suggesting a novel therapeutic process that can be leveraged to protect individuals against pneumonia. (Figure Presented).

11.
Journal of Aerosol Medicine and Pulmonary Drug Delivery ; 35(2):A2, 2022.
Article in English | EMBASE | ID: covidwho-1815946

ABSTRACT

SARS-CoV-2 is a coronavirus that infects epithelial cells in the naso- and oropharynx before infecting epithelial cells of the lower airways and alveoli and in severe COVID-19 spreading systemically and inducing a systemic inflammatory response. SARS-CoV-2 is spread mainly by virus particles in droplets and aerosols. This suggests that inhaled therapies may be useful in the treatment of early COVID-19 disease before severe respiratory systemic features develop and potentially in reducing transmission of the virus in the community. To be effective any inhaled therapy must be rapidly acting to prevent viral replication in respiratory epithelial cells to prevent the disease spreading down the respiratory tract and into the systemic circulation. It also needs to be safe and available for early prescription in order to prevent severe disease and hospitalisation. The development of inhaled therapies for COVID-19 may involved repurposing of existing inhaled therapies or developing inhaled formulations of new drugs with antiviral effects. Patients with asthma and COPD were reported to be less likely to be hospitalised with SARS-CoV-2 infection despite the concern that this coronavirus would have severe consequences for these patients as coronaviruses are known to trigger severe exacerbations. One possibility was that this may be due to the widespread treatment with inhaled corticosteroids (ICS), which are known to suppress ACE2 and TMPRSS2 on epithelial cells that are key entry receptors for the virus and also reduce virus replication in vitro. A community based open label parallel group phase 2 study of the ICS budesonide (800 lg bid until recovery) in people with early symptoms (within 7 days of onset) of COVID-19 and confirmed by PCR testing (STOIC) showed that only 1/69 people in the ICS group developed severe disease compared with 10/70 in the usual care group.1 Clinical recovery was also shorter in the ICS group. This finding was confirmed in an open label study of inhaled budesonide in individuals over the age of 65 years at risk from severe COVID-19 (PRINCIPLE), which showed a reduction in time to recovery and a trend towards reduced hospitalisation and death.2 Several other trials, including double-blind studies, of ICS in early COVID-19 are currently underway with different corticosteroids, including ciclesonide, which appears to be the most effective against SARS-CoV-2 in vitro.3 However, a recent double-blind study of nasal and inhaled ciclesonide failed to show any benefit in early COVID-19, although the population was mainly young adults who have a low risk of disease progression.4 The mechanism of action of ICS in COVID- 19 has not yet been established, but may involve reduced viral entry due to suppression of ACE2 and TMPRSS2 in airway epithelial cells, reduced viral proliferation or reduced inflammatory mediators secreted by airway epithelial cells that may promote viral spreading. Interferon b1 is currently approve for treating multiple sclerosis. Nebulised IFN-b1a (SNG001) gave a greater degree of clinical improvement in hospitalised COVID-19 patients and a reduction on symptoms (mainly dyspnoea) compared to with placebo and was well tolerated.5 However, studies in early disease are underway but have not yet been reported, although there are logistical problems in the need for a nebuliser to deliver the drug. Inhaled PUL-42 is a combination of a TLR2/6 and a TLR9 inhibitors which is effective in a single inhaled dose against SARS-CoV and MERS-CoV infection in mice and reduces the lung viral load.6 This drug is now in clinical trials for COVID-19. Other inhaled drugs, including antivirals such as remdesivir and niclosamide, are also in development.

12.
Chinese Journal of Animal Nutrition ; 34(1):159-176, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-1771309

ABSTRACT

This experiment was conducted to investigate the effects of recombinant porcine Lactobacillus reuteri secreting bovine lactoferrin peptide (LFCA) on growth performance of newborn piglets and the protective effect on porcine transmissible gastroenteritis virus (TGEV)infection which caused piglet diarrhea. Experiment 1:thirty-six one-day-old newborn piglets with an average body weight of about 1.5 kg were randomly divided into 3 groups, which were pPG-LFCA/LR-CO21 group, pPG/LR-CO21 group and control group, each group with 12 piglets. Piglets in each group were orally administered recombinant porcine Lactobacillus reuteri expressing LFCA pPG-LFCA/LR-CO21, containing empty vector plasmid PPG/LR-CO21 and equal volume phosphate buffer (PBS);oral administration continued for 3 days, and the observation time after oral administration was 14 d. During the period, piglets were fed freely, and the changes of body weight and diarrhea were recorded. Experiment 2:thirty one-day-old newborn piglets with an average body weight of about 1.5 kg were randomly divided into 5 groups and given TGEV with a half tissue culture infection dose (TCID50) of 10-7.50/mL by oral administration of 1, 3, 6, 9 and 12 mL, respectively. The observation period of 7 d was set to analyze the conditions of half lethal dose. Experiment 3:another thirty-two newborn piglets with an average body weight of about 1.5 kg were selected as experimental animals and randomly divided into 4 groups, with 8 piglets in each group. The groups were pPG-LFCA/LR-CO21 group, pPG/LR-CO21 group, control group and TGEV infect group. There were 8 replicates in each group and 1 piglet in each replicate. Each head of the experimental group was orally fed ppG-LFCA/LR-CO21, pPG/LR-CO21 and equal volume of PBS at a dose of 2..1010 CFU per day for 1 consecutive week. At 8 days of age, TGEV was infected by oral administration at half lethal dose, and samples were collected after 7 days of infection. The weight change and diarrhea of each group of piglets were recorded;hematoxylin-eosin staining was used to detect the length of intestinal villi and the depth of crypts;enzyme linked immunosorbent assay (ELISA) was used to determine total serum total immunoglobulin G (IgG) and total secretory immunoglobulin A (sIgA) antibody contents. RT-qPCR was used to detect the mRNA relative expression levels of Claudin-1, Occludin, tight junction protein-1 (ZO-1), inflammatory cytokines interleukin-6 (IL-6), interleukin-8 (IL-8), interferon-P (IFN-P), tumor necrosis factor-a (TNF-a) and Toll-like receptor 2 (TLR2). The flora structure of the contents of the piglet's cecum was analyzed. After oral recombinant porcine Lactobacillusreuteri, compared with the control group, the average daily gain of newborn piglets in the pPG-LFCA/LR-CO21 group was significantly increased (P < 0.01), while the diarrhea rate was significantly decreased (P < 0.01). Compared with TGEV infection group, the average daily gain of piglets in pPG-LFCA/LR-CO21 group was increased and diarrhea rate was decreased, and the differences were significant (P < 0.05). Villus height and the ratio of villus height to crypt depth in jejunum and ileum were significantly increased (P < 0.05). The contents of total IgG and intestinal mucosal total sIgA antibody in serum of piglets were significantly increased (P < 0.05);the mRNA relative expression levels of tight junction protein-related genes Claudin-1, Occludin and ZO-1 in intestinal mucosal tissue were extremely significantly increased (P < 0.01), and the serum TNF-a content was extremely significantly decreased (P < 0.01). Serum IFN-P, IL-6, IL-8 and TLR2 contents were significantly increased (P < 0.01), and the survival rate of piglets was improved. The analysis of the bacterial diversity in the contents of the piglets' cecum showed that the proportion of normal intestinal flora of piglets decreased after TGEV infection. Compared with the TGEV infect group, the proportion of pathogenic bacteria Bacteroides in piglet's intestinal flora decreased by o

13.
European Heart Journal ; 42(SUPPL 1):2757, 2021.
Article in English | EMBASE | ID: covidwho-1554461

ABSTRACT

Background: Unravelling autoimmune targets triggered by SARS-CoV-2 infection may provide crucial insights in the physiopathology of the disease and foster the development of potential therapeutic candidate targets and prognostic tools. SARS-CoV-2 autoimmune-mediated inflammation have been reported, but the existence of autoantibodies against apolipoprotein A-1 (anti-apoA-1 IgG) in COVID-19 remains unexplored. Anti-apoA-1 IgGs have emerged as an independent biomarker for cardiovascular disease and mortality in humans with proinflammatory and proatherogenic functions in vivo and in vitro. Purpose:We want to determine i) the degree of homology between SARSCoV-2, apoA-1, and Toll-like receptor-2 (TLR2) epitopes, ii) the association between anti-SARSCoV2 and anti-apoA-1 IgGs, and iii) their relationship to prognosis. Methods: We performed bioinformatics modelling coupled with mimetic peptides engineering, as well as functional and competition assays with antibodies to identify molecular mimicry between SARS-CoV-2, apoA-1 and TLR2 epitopes. Anti-Spike domain 1 (SD1) IgGs, anti-apoA-1 IgGs and against mimic peptides, as well as cytokines were assessed by immunoassays on a case-control (n=101), an intensive care unit (ICU;n=126) with a 28-days follow-up for overall mortality, and a general population cohort (n=663) with available samples in the pre and post-pandemic period. Results: Linear sequence homologies and antibodies cross-reactivity between apoA-1, TLR2, and Spike epitopes were identified. Overall, antiapoA-1 IgG levels were higher in COVID-19 patients or anti-SARS-CoV-2 seropositive individuals than in healthy donors or anti-SARS-CoV-2 seronegative individuals (p<0.0001). Significant and similar associations were noted between anti-apoA-1, anti-SARS-CoV-2 IgG, cytokines, and lipid profile. In ICU patients, anti-SARS-CoV-2 and anti-apoA-1 seroconversion rates displayed similar 7-days kinetics, reaching 82% for anti-apoA-1 seropositivity. C-statistics (CS) indicated that baseline anti-Spike/TLR2 mimic-peptide IgGs displayed a significant prognostic accuracy for overall mortality at 28 days (CS: 0.64;p=0.02). In the general population, SARSCoV-2 exposure increased baseline anti-apoA-1 IgG levels. Conclusions: COVID-19 induces a marked humoral response against the major protein of high-density lipoproteins. As a correlate of poorer prognosis in other clinical settings, such autoimmunity signatures may relate to long-term COVID-19 prognosis assessment and warrant further scrutiny in the current COVID-19 pandemic.

14.
International Journal of Research in Pharmaceutical Sciences ; 12(4):2548-2556, 2021.
Article in English | EMBASE | ID: covidwho-1554033

ABSTRACT

The outbreak of the SARS CoV2 ’Coronavirus pandemic’ is believed to have originated in Wuhan in 2019 as a zoonotic spread from bats to humans. It is a highly communicable infection-causing rapid human to human transmission of the virus by virtue of its infectious and pleomorphic nature. The virus has affected millions of people worldwide, with numbers still rising with each passing day. Depleting oxygen saturation levels is amongst the prime concerns in the majority of infected patients. Nasal prongs, face masks, mechanical ventilation and extracorporeal membrane (ECMO) are the commonly used modes of oxygen delivery in such patients. These methods though mostly successful, at times fail to restore the depleting oxygen levels to normal. Hyperbaric oxygen therapy (HBOT) involves the administration of 100% O2 in a special chamber whose pressure is maintained at a level greater than 1 ATP. The main purpose for raising the pressure within the chamber is that as the atmospheric pressure increases, the saturation levels of oxygen in the blood also increase, which eventually result in increased overall tissue oxygenation. This article provides a systematic and wholesome review on the basic principle of hyperbaric oxygen therapy, its effects on the body at a microscopic and macroscopic level, its various uses and its suitability as an adjuvant for the treatment of select COVID-19 infected patients.

15.
Eur J Clin Invest ; 51(11): e13661, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1398398

ABSTRACT

BACKGROUND: Unravelling autoimmune targets triggered by SARS-CoV-2 infection may provide crucial insights into the physiopathology of the disease and foster the development of potential therapeutic candidate targets and prognostic tools. We aimed at determining (a) the association between anti-SARS-CoV-2 and anti-apoA-1 humoral response and (b) the degree of linear homology between SARS-CoV-2, apoA-1 and Toll-like receptor 2 (TLR2) epitopes. DESIGN: Bioinformatics modelling coupled with mimic peptides engineering and competition experiments were used to assess epitopes sequence homologies. Anti-SARS-CoV-2 and anti-apoA-1 IgG as well as cytokines were assessed by immunoassays on a case-control (n = 101), an intensive care unit (ICU; n = 126) and a general population cohort (n = 663) with available samples in the pre and post-pandemic period. RESULTS: Using bioinformatics modelling, linear sequence homologies between apoA-1, TLR2 and Spike epitopes were identified but without experimental evidence of cross-reactivity. Overall, anti-apoA-1 IgG levels were higher in COVID-19 patients or anti-SARS-CoV-2 seropositive individuals than in healthy donors or anti-SARS-CoV-2 seronegative individuals (P < .0001). Significant and similar associations were noted between anti-apoA-1, anti-SARS-CoV-2 IgG, cytokines and lipid profile. In ICU patients, anti-SARS-CoV-2 and anti-apoA-1 seroconversion rates displayed similar 7-day kinetics, reaching 82% for anti-apoA-1 seropositivity. In the general population, SARS-CoV-2-exposed individuals displayed higher anti-apoA-1 IgG seropositivity rates than nonexposed ones (34% vs 16.8%; P = .004). CONCLUSION: COVID-19 induces a marked humoral response against the major protein of high-density lipoproteins. As a correlate of poorer prognosis in other clinical settings, such autoimmunity signatures may relate to long-term COVID-19 prognosis assessment and warrant further scrutiny in the current COVID-19 pandemic.


Subject(s)
Antibodies, Viral/immunology , Apolipoprotein A-I/immunology , Autoantibodies/immunology , COVID-19/immunology , Cytokines/immunology , Immunity, Humoral/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , Apolipoprotein A-I/chemistry , Computational Biology , Epitopes/chemistry , Female , Humans , Immunoglobulin G/immunology , Male , Middle Aged , Peptide Fragments/chemistry , Peptide Fragments/immunology , Peptides , SARS-CoV-2 , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/chemistry , Toll-Like Receptor 2/chemistry , Toll-Like Receptor 2/immunology , Young Adult
16.
Biomedicines ; 9(8)2021 Aug 21.
Article in English | MEDLINE | ID: covidwho-1376733

ABSTRACT

Antimicrobial resistance is one of the most significant threats to health and economy around the globe and has been compounded by the emergence of COVID-19, raising important consequences for antimicrobial resistance development. Contrary to conventional targeting approaches, the use of biomimetic application via nanoparticles for enhanced cellular targeting, cell penetration and localized antibiotic delivery has been highlighted as a superior approach to identify novel targeting ligands for combatting antimicrobial resistance. Gram-positive bacterial cell walls contain lipoteichoic acid (LTA), which binds specifically to Toll-like receptor 2 (TLR2) on human macrophages. This phenomenon has the potential to be exploited for the design of biomimetic peptides for antibacterial application. In this study, we have derived peptides from sequences present in human TLR2 that bind to LTA with high affinity. In silico approaches including molecular modelling, molecular docking, molecular dynamics, and thermodynamics have enabled the identification of these crucial binding amino acids, the design of four novel biomimetic TLR2-derived peptides and their LTA binding potential. The outcomes of this study have revealed that one of these novel peptides binds to LTA more strongly and stably than the other three peptides and has the potential to enhance LTA targeting and bacterial cell penetration.

17.
BMC Infect Dis ; 20(1): 901, 2020 Nov 30.
Article in English | MEDLINE | ID: covidwho-1005880

ABSTRACT

BACKGROUND: Staphylococcus aureus bacteremia (SAB) presents heterogeneously, owing to the differences in underlying host conditions and immune responses. Although Toll-like receptor 2 (TLR2) is important in recognizing S. aureus, its function during S. aureus infection remains controversial. We aimed to examine the association of TLR2 expression and associated cytokine responses with clinical SAB outcomes. METHODS: Patients from a prospective SAB cohort at two tertiary-care medical centers were enrolled. Blood was sampled at several timepoints (≤5 d, 6-9 d, 10-13 d, 14-19 d, and ≥ 20 d) after SAB onset. TLR2 mRNA levels were determined via real-time PCR and serum tumor necrosis factor [TNF]-α, interleukin [IL]-6, and IL-10 levels were analyzed with multiplex-high-sensitivity electrochemiluminescent ELISA. RESULTS: TLR2 levels varied among 59 SAB patients. On days 2-5, TLR2 levels were significantly higher in SAB survivors than in healthy controls (p = 0.040) and slightly but not significantly higher than non-survivors (p = 0.120), and SAB patients dying within 7 d had lower TLR2 levels than survivors (P = 0.077) although statistically insignificant. IL-6 and IL-10 levels were significantly higher in non-survivors than in survivors on days 2-5 post-bacteremia (P = 0.010 and P = 0.021, respectively), and those dying within 7 d of SAB (n = 3) displayed significantly higher IL-10/TNF-α ratios than the survivors did (P = 0.007). CONCLUSION: TLR2 downregulation and IL-6 and IL-10 concentrations suggestive of immune dysregulation during early bacteremia may be associated with mortality from SAB. TLR2 expression levels and associated cytokine reactions during early-phase SAB may be potential prognostic factors in SAB, although larger studies are warranted.


Subject(s)
Bacteremia/metabolism , Bacteremia/mortality , Cytokines/metabolism , Down-Regulation/genetics , Staphylococcal Infections/metabolism , Staphylococcal Infections/mortality , Staphylococcus aureus/isolation & purification , Toll-Like Receptor 2/genetics , Adult , Aged , Aged, 80 and over , Cytokines/analysis , Female , Humans , Male , Middle Aged , Prognosis , Prospective Studies , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism , Survivors , Tertiary Care Centers
SELECTION OF CITATIONS
SEARCH DETAIL